Home
Reports
News, Tipps, …
Suche & Archiv
Die besten Events
Werbung
Über uns
Impressum
Datenschutz
| |
Publireportage
27.10.2024 Schokolade-Alternative aus Sonnenblumenkernen Chocolat Stella lanciert zwei innovative Limited Editions Schokoladetafeln zusammen mit ChoViva von Planet A Foods und Koa. News, Tipps, … Druckansicht19.12.2022 FORSCHUNG: Fälschungen aufdecken mit berührungslosen Lichtquanten Beim Einkaufen im Supermarkt müssen sich Konsumenten auf die Lebensmittel-Kennzeichnung verlassen können. Aber ist die immer korrekt? Betrug bei den Inhaltsstoffangaben von Lebensmitteln kann nicht nur wirtschaftliche Schäden anrichten, sondern auch zu gesundheitlichen Risiken führen. Labore nutzen daher Authentizitätsprüfungen, um festzustellen, ob bei Lebensmitteln die ausgewiesene geographische Herkunft stimmt, ob tatsächlich auf bestimmte Inhaltsstoffe wie Palmöl verzichtet wurde, oder ob keine weiteren hinzugefügt wurden. Bisher werden für diese Analysen kernmagnetische Resonanzspektroskopien (NMR) genutzt. Die NMR-Spektroskopie ermöglicht es, fast jede organische Substanz in einer bestimmten Probe eindeutig zu identifizieren. Die Analysen sind allerdings sehr teuer – die dafür benötigten Anlagen sind gross, komplex und kosten mehrere Millionen Euro. Berührungslose Messung durch Quanten Im BMBF-geförderten Projekt QSPEC wollen AMO, LZH, die AG Photonische Quantentechnologien der LUH, TOPTICA, AMOtronics und das DIL nun ein alternatives Prüfverfahren entwickeln: Die quantenbasierte Spektroskopiemethode soll kompakter, günstiger und hochsensitiv sein. „Wir erforschen ein Verfahren, welches es erlaubt mittels verschränkter Photonen die zu analysierende Substanz bei einer Wellenlänge zu messen und die daraus gewonnene Information bei einer anderen Wellenlänge zu detektieren", erklärt Dr. Stephan Suckow, Leiter der Nanophotonik Gruppe bei der AMO GmbH und Verbundkoordinator des Projekts QSPEC. “Im ersten Schritt wird ein verschränktes Photonenpaar, bestehend aus einem langwelligen und einem kurzwelligen Photon erzeugt”, erläutert Dr. Suckow weiter. Das langwellige Photon interagiert nun mit der Probe und ändert dabei beispielsweise seine Phase. Dieses manipulierte Photonenpaar wird dann in einem weiteren Prozesse eingespeist, in dem noch ein Photonenpaar erzeugt wird. Die im Paar enthaltenen Informationen werden durch Quanteninterferenz umgewandelt, sodass diese schlussendlich einfach durch die Zählrate der kurzwelligen Photonen auslesbar wird. Die kurzwelligen Photonen sind als Träger der Information mit aktueller Technik besonders gut messbar. Die Bandbreite der Photonenpaare macht es dabei möglich, die Probe spektral aufzulösen. „Die daraus entstehenden Spektren der einzelnen Lebensmittelproben sind dabei wie Fingerabdrücke“, erklärt Dr. Suckow „Wir können diese Fingerabdrücke dann mit anderen Referenzproben vergleichen und dadurch Rückschlüsse auf Inhaltsstoffe und geographische Charakteristika ziehen.“ Notwendig für die Erzeugung der Quantenfrequenzkämme sind neuartige Laserstrahlquellen, die LZH und TOPTICA für das Projekt entwickeln. Die AMO GmbH wird durch nanolithographische Methoden Chips erstellen, die die notwendige Technik auf kleinstem Raum unterbringt. Die für die Detektion notwendige ultraschnelle Elektronik wird AMOtronics beisteuern. Das Institut für Photonik der LUH wird im Anschluss die einzelnen Komponenten zu einem System zusammenführen, so dass das DIL die neue Methode testen und eine Referenzbibliothek aufbauen kann. Aus der Zusammensetzung der Inhaltsstoffe kann die Herkunft von Olivenöl, Fruchtsaft, Honig und vielen anderen Lebensmitteln zweifelsfrei ermittelt werden. Die Detektion von Schadstoffen in geringsten Konzentrationen ist ebenso möglich. Dies wäre die Grundlage für eine neue Generation von Analysewerkzeugen, die eine umfassende Qualitätssicherung bei der Produktion von Lebensmitteln erlaubt. (Laser Zentrum Hannover e.V.) (gb) News, Tipps, … – die neuesten Beiträge Ecke für Profis
29.10.2024 .MOLKEREI: Aroma-Vorhersage bei Käsereifung Eine Vorhersage der Käsearoma-Entwicklung ist mit neuer Methode der Technischen Uni München bald möglich dank präziser, schneller und effizienter Analyse der Peptide. |